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Abstract 

This paper presents a method for change detection of Synthetic Aperture Radar (SAR) data based on the evolution of local 

statistics of images. The Kullback-Leibler divergence between two probabilistic distributions is exploited to detect changes on 

a pair of ALOS-PALSAR images with resolution of 33.2 m × 28.4 m (range × azimuth) and polarization HH. These images 

involves the eruption of Merapi volcano, Indonesia in 2010. The appropriate distribution to the data is chosen through the χ2 

test of fit. The experimental results have shown the relevancy of the method. 
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1. Introduction 

Since the success of launching Synthetic Aperture Radar (SAR) satellites in the late 1970’s, the use of SAR 

imagery has been studied extensively in many fields, such as natural feature mapping and analysis: forest 

(Champion et al., 2014), wet snow cover (Schellenberger et al., 2012); natural and man-made disaster monitoring 

like: flood (Refice et al., 2014), landslide (Colesanti and Wasowski, 2006), earthquake damage (Brunner et al., 

2010), volcanic eruption (Le et al., 2015), etc. SAR remote sensing uses microwave portion of the electromagnetic 

spectrum, from a frequency of 0.3 GHz to 300 GHz, between P and Ka band with different penetration capabilities, 

these systems, therefore, are appropriate for operational monitoring tasks. However, unlike optical images, the 

difference between two SAR images is almost impossible for the detection of change on SAR images due to the 

presence of speckle. Ratio operator is more effective to detect changes than the difference operator in SAR images. 

The obtained ratio change maps are often with high false alarm rate though. In fact, some distribution models are 

used to describe the statistical distribution of SAR data, such as: the Gamma, the Generalized Gaussian, the 

Nakagami, the Weibull, the Log-normal models, etc. Then similarity/dissimilarity measures between two 

distributions are often calculated to detect changes of SAR images. This paper provides a method for change 

detection of SAR images based on the statistical similarity measure. A measure derived from the information 

theory called Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951) is chosen. 

 

 
* Corresponding author. 

E-mail address: lethutrang.plat@gmail.com 

http://www.humg.edu.vn/


2 T. T. Lê et al. / ESASGD 2016 

2. Methodology 

2.1. Kullback-Leibler divergence 

Kullback-Leibler (KL) divergence is a quantitative measurement of differences between probability density 

functions (PDF) (Inglada and Mercier, 2007). This is a non-symmetric measure of the difference between two 

probability distributions PX and PY of random variables X and Y: 

 

𝐾(𝑋||𝑌) = ∫ 𝑃𝑋(𝑥) log (
𝑃𝑋(𝑥)

𝑃𝑌(𝑦)
) 𝑑𝑥 

        (1) 

We can see that  𝐾(𝑋||𝑌)  ≠ 𝐾(𝑌||𝑋), the symmetric version can then be defined as: 

𝑑KL(𝑋, 𝑌) = 𝑑KL(𝑌, 𝑋) =
1

2
(𝐾(𝑋||𝑌) + 𝐾(𝑌||𝑋)) 

      (2) 

dKL is the Kullback-Leibler distance (KLD) employed to measure the similarity between distributions of two 

SAR images for the detection of changes on the observed area. Changes on the ground induce the evolution of the 

local statistics of images. The KLD can be used to identify the difference of shapes of the local PDFs.  

2.2. Kullback-Leibler divergence between several standard distributions 

2.2.1. Normal Kullback-Leibler divergence 

Under the assumption that X and Y have normal distribution (Gaussian law), the PDFs 𝑃X = 𝑃(𝜇X, 𝜎X
2), 𝑃Y =

𝑃(𝜇Y, 𝜎Y
2). By introducing Gaussian models to the KL divergence given in (1), we obtain the Gaussian KL 

divergence as follows (Penny, 2001): 

 

𝐾𝐿𝑁(𝜇X, 𝜎X
2;  𝜇Y, 𝜎Y

2) = 0.5 log
𝜎Y

2

𝜎X
2 +

𝜇X
2 + 𝜇Y

2 + 𝜎X
2 − 2𝜇X𝜇Y

2𝜎Y
2 − 0.5 

     (3) 

where µ and σ2 are the mean and the variance, respectively. 

2.2.2. Gamma Kullback-Leibler divergence 

Since L-look intensity data are not normally distributed, in the absence of texture, the probability density of 

this data follows a Gamma law. According to this, Gamma KL divergence between two Gamma distributions is 

defined as (Penny, 2001):  

 

 𝐾𝐿𝐺(𝜇X, 𝐿X;  𝜇Y, 𝐿Y) = (𝐿X − 1)Ψ(𝐿X) − log 𝜇X − 𝐿X − log Γ(𝐿X) 

 + log Γ(𝐿Y) + 𝐿Y log 𝜇Y − (𝐿Y − 1)(Ψ(𝐿X) + log 𝜇X) +
𝜇X𝐿X

𝜇Y
 

   (4) 

with L, the number of looks. 

2.2.3. Log-Normal Kullback-Leibler divergence 

To describe heterogeneous regions which are more realistic cases, the empirical distributions are often used. 

The empirical approach considers that speckle is not fully developed and distribution functions are empirically 

defined. In this paper, Log-normal and Weibull are exploited in the experimental works. 

The symmetric KL divergence between two Log-normal distributions is given in Atto et al., 2013 as: 

 

 𝐾𝐿𝐿𝑜𝑔𝑛(𝛼X, 𝛽X; 𝛼Y, 𝛽Y ) =
1

2
(𝛼X − 𝛼Y)2 (

1

𝛽X
2 +

1

𝛽Y
2) +

1

2
(

𝛽X
2

𝛽Y
2 +

𝛽Y
2

𝛽X
2) − 1 

    (5) 

where α and β are the log-scale and shape parameters, respectively. 

2.2.4. Weibull Kullback-Leibler divergence 

Weibull distribution can well model single look data but not precisely multilook data, it is suitable for low 

heterogeneous areas. The symmetric KL divergence between Weibull random variables X and Y is denoted (Atto 

et al., 2013) as: 

 𝐾𝐿𝑊𝑏𝑙(𝛼X, 𝛽X; 𝛼Y, 𝛽Y ) = (
𝑎X

𝑎Y
)

𝑏Y

Γ (1 +
𝑏Y

𝑏X
) + (

𝑎Y

𝑎X
)

𝑏X

Γ (1 +
𝑏X

𝑏Y
) 

    +𝜖 (
𝑏X

𝑏Y
+

𝑏Y

𝑏X
− 2) + (𝑏X − 𝑏Y) log

𝑎X

𝑎Y
 

     (6) 

where a and b are the scale and shape parameters, 𝜖 is the Euler–Mascheroni constant. 
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3. Experimental works 

3.1. Study area and data 

3.1.1. Merapi volcano 

Merapi, located at 7° 32’ 26” S and 110° 26’ 48” E, is a volcano in the north of the Yogyakarta city in central 

Java, Indonesia (Fig. 1). It is known as one of the most dangerous volcanoes worldwide due to its persistent 

eruptive activity and location within densely populated areas. From October 26 to November 23, 2010, the largest 

eruption since 1872 occurred with numerous pyroclastic flows that traveled down the heavily populated slopes of 

the volcano, mostly to southeast, south and southwest. This violent eruption caused the greatest influence to human 

life with more than 200 direct deaths, 2200 damaged infrastructures, buildings, agriculture areas, etc., and over 

400,000 evacuated people from the affected area (Komorowski et al., 2013). The volcanic ash clouded few km 

above the summit and went with the wind in the air, endangered health of people in surrounding cities and also 

caused major disruption to aviation across Java. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

                   

    (a)       (b)          (c) 

Fig. 1. Merapi volcano test-site. (a), (b): HH polarization ALOS-PALSAR ascending image on September 16, 2010 (before the 2010 

eruption) and on February 01, 2011 (after the 2010 eruption); (c): ASTER image on November 15, 2010 (during the 2010 eruption). 

3.1.2. ALOS-PALSAR data 

A pair of ALOS-PALSAR images is used in our experimental works to detect changes after the volcanic 

eruption of Merapi in 2010. The two images are ascending ALOS-PALSAR images with resolution of 33.2 m × 

28.4 m (range × azimuth) and polarization HH acquired on September 16, 2010 (before the 2010 eruption) and 

on February 01, 2011 (after the 2010 eruption) over Merapi volcano test-site, Indonesia (see Fig. 3 (b), (c)). The 

main characteristics of the data are shown in Table. 1. 

Table 1. ALOS - PALSAR data description 

Specifications  ALOS - PALSAR data 

Manufacturer  

Satellite launch date  

Operation completed date 
Satellite orbit  

Incidence angle  

Repeat cycle  
Imaging frequency  

Beam mode  

Data product  
Spatial resolution  

Polarization  

Test-site  
Acquisition dates 

 

JAXA 

January 24, 2006 

May 12, 2011 
Ascending 

34.3° 

46 days 
L-band at 1.27 GHz 

High resolution Double Polarization 

Single look complex (Level 1.1) 
33.2 m × 28.4 m (range × azimuth) 

HH 

Merapi volcano, Indonesia 
September 16, 2010 (before the eruption) 

February 01, 2011 (after the eruption) 
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3.2. Goodness of fit test 

In order to seek an appropriate distribution that well describes the data use in the experimental work, the χ2 test 

of fit is employed to test the goodness of fit of several standard probability distributions usually used for modeling 

SAR data (i.e., Rayleigh, Gamma, Gaussian), as well as Log-normal and Weibull distributions to ALOS-PALSAR 

data used in this paper. Each sample distribution is divided into m classes, which are taken to be successive 

intervals in the range of the data. The probability of an observation coming from each class can be easily calculated 

from the assumed distribution function, and is denoted by poi, i = 1, 2, …, m. The observed frequency in each class 

is given by ni, with n total observations.  

The χ2 test statistics: 𝜒2 = ∑
(𝑛𝑖−𝑛𝑝0𝑖)2

𝑛𝑝0𝑖

𝑚
𝑖=1         (7) 

follows approximately a χ2 distribution with (m − c − 1) degrees of freedom, where c is the number of estimated 

parameters. Lower χ2 indicates a better fit. 

For this purpose, the whole ALOS-PALSAR image is divided into 25 sub-images, then parameters of given 

distributions are estimated by Maximum-Likelihood estimation (MLE) for each sub-image. The fit of each 

distribution to the data tested by χ2 is provided in Fig. 2 and Table. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. χ2 statistics of all sub-images of ALOS-PALSAR image 

Table 2. χ2 statistics for each distribution of all sub-images of ALOS - PALSAR image 

Sub-image no Gamma Log-normal Gaussian Rayleigh Weibull 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

267.9 

567.8 

63.0 

163.4 

167.1 

12663.5 

3781.2 

107.4 

2894.1 

13335.2 

5379.3 

3775.7 

2760.5 

47.2 

10136.8 

4978.3 

10121.6 

1850.6 

1287.2 

1883.3 

756.5 

12061.4 

2278.6 

625.4 

7532.8 

72.6 

301.6 

261.5 

55.2 

327.8 

792.1 

175.8 

155.7 

545.4 

1903.5 

717.7 

228.1 

390.2 

374.2 

1150.5 

636.6 

808.1 

604.7 

710.7 

958.6 

969.5 

977.9 

480.8 

432.8 

854.7 

356.6 

3837.4 

964.6 

6270.0 

1053.1 

10443.5 

13655.2 

462.6 

2380.4 

7541.0 

19886.3 

6334.5 

34857.7 

847.4 

5724.7 

4907.7 

32990.8 

12440.2 

5368.6 

9003.6 

1059.5 

19502.7 

234301 

13557.4 

451.7 

609.0 

4259.5 

7736.5 

403.3 

20.2 

11559.2 

8703.7 

63.6 

1963.6 

4804.6 

51505.7 

8945.6 

8187.3 

4.1 

2524.8 

3682.3 

60288.1 

4506.1 

2689.6 

2999.1 

715.5 

12234.2 

2873.9 

889.5 

6790.5 

1570.1 

4338.6 

2767.6 

1411.9 

9.5 

15364.2 

8.2 

1.3 

8917.6 

14997.5 

6172.8 

3946.5 

3730.2 

2.9 

1870.0 

5730.4 

9695.7 

2515.4 

1019.2 

2520.7 

87.3 

1756.9 

7947.3 

1836.6 

7751.9 

Mean 3979.7 595.5 8649.2 9684.0 5199.0 
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Merapi is a heterogeneous test-site with volcanic mountains, surrounding villages and cultivating land. Among 

the tested distributions, the Log-normal is the most appropriate one (with the smallest χ2 statistics demonstrated 

in Fig. 2 and Table. 2) for amplitude ALOS-PALSAR data used in this paper. 

3.3. Change detection results 

Based on the result of the χ2 test of fit, KLD between two Log-normal distributions is used to detect changes 

on two ALOS-PALSAR images. For the comparative purpose, changes are also detected by using KLD between 

two Normal, two Gamma and two Weibull distributions and by using ratio operator. 

The intensity ratio in Fig. 3 (a) has a very noisy change detection result, whilst the local mean ratio in Fig. 3 

(b) gives a blurred one. Observing the results provided by KLD, we can see obviously that KLD identifies well 

changes on SAR images with sharp edges detected. The results of the three KLDs between Normal, Gamma and 

Weibull distributions (Fig. 3 (c), (d), (e)) are noisier than the one of Log-normal KLD (Fig. 3 (f)).  
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      (c)                                        (d)                                         (e)                                        (f)  

 
Fig. 2. Change detection results. (a): Intensity ratio; (b): Local mean ratio;  

(c): Gamma KLD; (d): Normal KLD; (e): Weibull KLD; (f): Log-normal KLD. 
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4. Conclusions 

In this paper, Kullback-Leibler divergence between probability density functions is exploited to perform 

multitemporal change detection. The difference due to the evolution of the probability law on the neighborhood 

of each pixel which reflect changes on the ground can be estimated by KLD.  

Depending on the natural statistics of SAR imagery, suitable probabilistic distributions should be chosen to 

describe real data. In this work, the χ2 test of fit is employed to test the goodness of fit to find the appropriate 

distribution to the amplitude ALOS-PALSAR image. Among several given distributions, the Log-normal law is 

the most suitable one for the tested data. 
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